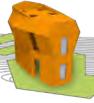
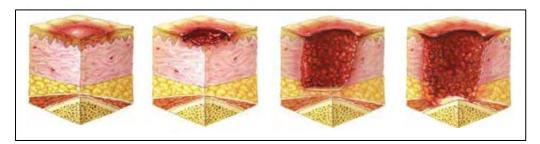

Modelling the apparent viscoelastic behaviour of passive muscle tissue under confined compression using a poroelastic framework

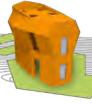
Thomas Lavigne, Giuseppe Sciumè, Sébastien Laporte, Hélène Pillet, Stéphane Urcun , Benjamin Wheatley, Pierre-Yves Rohan | SB 2021– Ocotber 2021


[Macron et al., 2018]


Context

Pressure ulcers:

- Localized injury
- Long terme and/or excessive loading [Bouten et al., 2003]



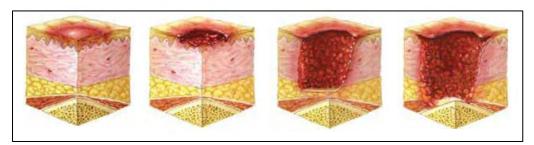
Stages 1 to 4 of pressure ulcers

[winncareacademy.com]

Context

Pressure ulcers:

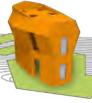
- Localized injury
- Long terme and/or excessive loading [Bouten et al., 2003]



A Society concern:

1 in 5 hospitalised patients in European hospitals [Vanderwee et al., 2007]

Stages 1 to 4 of pressure ulcers

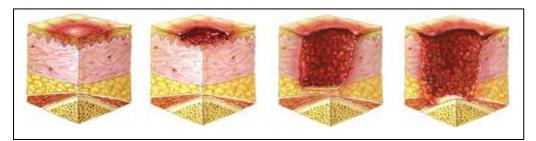

[winncareacademy.com]

Context

Pressure ulcers:

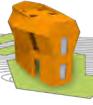
- Localized injury
- Long terme and/or excessive loading [Bouten et al., 2003]

1 in 5 hospitalised patients in European hospitals [Vanderwee et al., 2007]

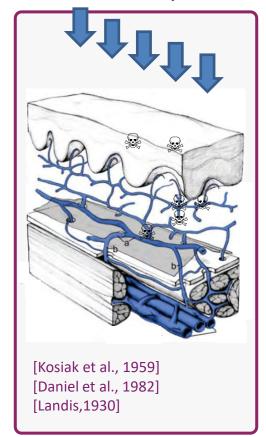


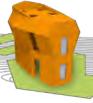
Why?

- Lack of information to evaluate first signs: visual identification


Stages 1 to 4 of pressure ulcers

[winncareacademy.com]

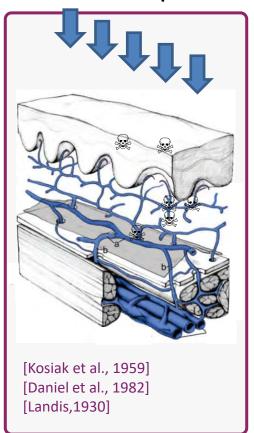




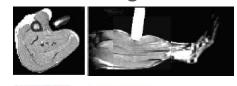
Aetiology

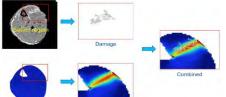
Two major processes competing:

Ischaemia & reperfusion



Aetiology


Two major processes competing:

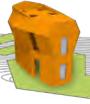

Ischaemia & reperfusion

Deformation

Tissue damage threshold

Animal Studies

[Ceelen et al., 2008]: (N=11)


[Traa 2019]: (N=39) [Nelissen 2018]: (N=53) [Nelissen 2017]: (N=20)

[Stekelenburg 2005]: (**N=10**)

Primary lesioninducing factor

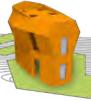
Mechanical aspect

How to model the soft tissue?

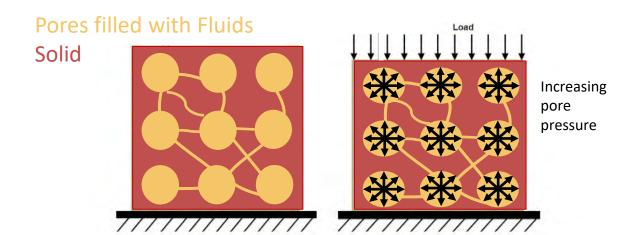
Challenge:

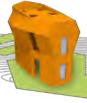
- > Model the time dependent and loading history dependant behaviour
- > Choice of a right material model for the soft tissue (type, structure...)

Authors	Year	Human/Animal	Samples	Confined Compression (CC) Unconfined Compression (UC)	Material Law
[Bosboom et al., 2001]	2001	Animal	In Vivo (n=4)	CC	Visco-hyper-elastic
[Aimedieu et al., 2003]	2003	Animal	Cylinders (n=6)	CC	Visco-elastic
[Van Loocke et al., 2006]	2006	Animal	Cuboids (n=12)	UC	Hyper-elastic
[Linder-Ganz et al., 2006]	2006	Human	In vivo (n=6)	CC	Visco-hyper-elastic
[Van Loocke et al., 2008]	2008	Animal	Cuboids (n=6)	UC	Visco-elastic
[Van Loocke et al., 2009]	2009	Animal	Cuboids	UC	Visco-hyper-elastic
[Wheatley et al., 2015]	2015	Animal	Cylinders (n=13 transverse & 13 longitudinal)	UC	Visco-hyper-elastic
[Vaidya and Wheatley, 2020]	2020	Animal	Cuboids (n=15 + 14) & Cylinders (n=16+15)	UC (Fast + Slow) & CC (Fast + Slow)	Visco-hyper-elastic



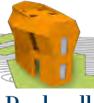
Authors	Year	Human/Animal	Samples	Confined Compression (CC) Unconfined Compression (UC)	Material Law
[Oomens et al., 1987]	1987	-	-	-	Theoritical Poroelastic Strain dependant permeability
[Argoubi and Shirazi-Adl, 1996]	1996	Human	-	-	Nonlinear poroelastic
[Bosboom et al., 2001]	2001	Animal	In Vivo (n=4)	CC	Visco-hyper-elastic
[Aimedieu et al., 2003]	2003	Animal	Cylinders (n=6)	CC	Visco-elastic
[Van Loocke et al., 2006]	2006	Animal	Cuboids (n=12)	UC	Hyper-elastic
[Linder-Ganz et al., 2006]	2006	Human	In vivo (n=6)	CC	Visco-hyper-elastic
[Van Loocke et al., 2008]	2008	Animal	Cuboids (n=6)	UC	Visco-elastic
[Van Loocke et al., 2009]	2009	Animal	Cuboids	UC	Visco-hyper-elastic
[Wheatley et al., 2015]	2015	Animal	Cylinders (n=13 transverse & 13 longitudinal)	UC	Visco-hyper-elastic
[Wheatley et al., 2016]	2016	Animal	Cylinders (n=4) Cuboid for model	UC	Poroelastic Moonley- Rivlin coupled model
[Vaidya and Wheatley, 2020]	2020	Animal	Cuboids (n=15 + 14) & Cylinders (n=16+15)	UC (Fast + Slow) & CC (Fast + Slow)	Visco-hyper-elastic



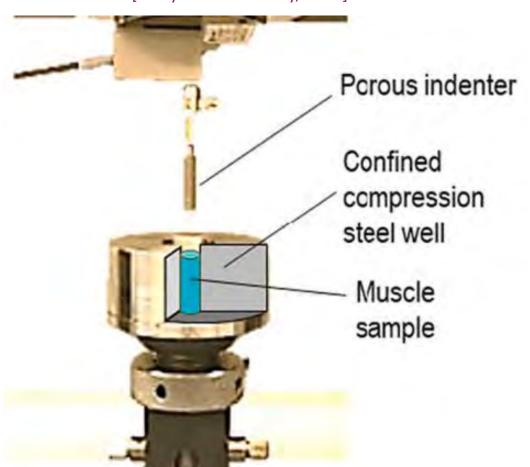


Muscle = Bi-phasic (up to 75% liquid)

[Wheatley et al., 2016]



In vivo Boundary Conditions: Semi-confined External mechanical load Non-weight-bearing MRI Element Ischial tuberosity Gluteus muscle of matter Strain External mechanical load 15 20 25 30 35 40 45 50 55 60 65 70 Weight-bearing MRI during sitting Computer simulation of deformations MR image during sitting



Previous Study

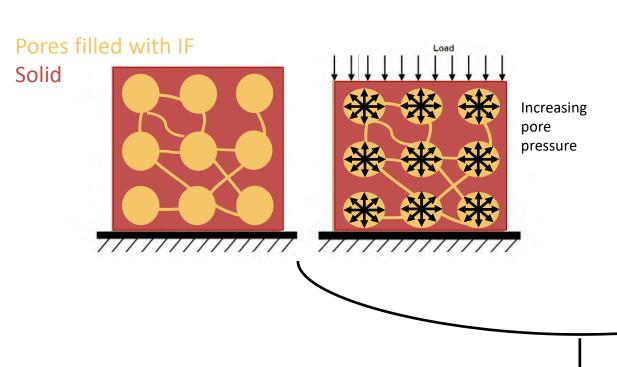
An experimental and computational investigation of the effects of volumetric boundary conditions on the compressive mechanics of passive skeletal muscle

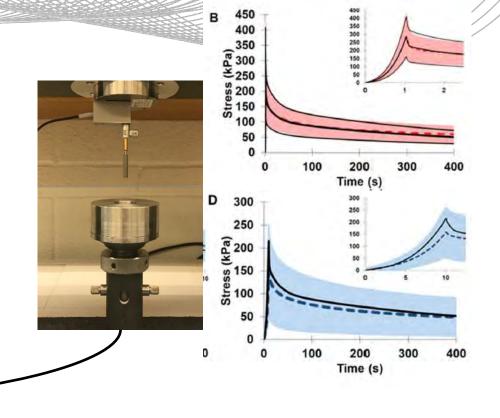
[Vaidya and Wheatley, 2020]

Final strain: 0.15

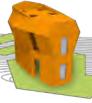
Fast strain rate: 0.15 s-1

N=16


Slow strain rate: 0.015 s-1

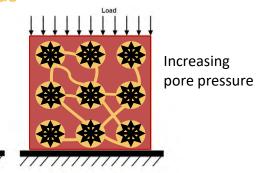

N=15

Objective

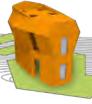


The possible role of poro-elasticity in the apparent visco-elastic behavior of passive muscle tissue under compression

> N=31 confined porcine muscle samples

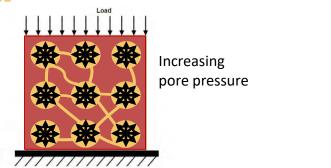


Unknowns of the problem: v^s , p


Pores filled with Fluids

Solid

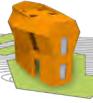
$$\begin{cases} \varepsilon^{\alpha} = \frac{Volume^{\alpha}}{Volume^{total}} \\ \varepsilon^{s} + \varepsilon^{l} = 1 \end{cases}$$
 2 phases



Unknowns of the problem: v^s , p

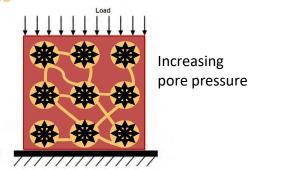
Pores filled with Fluids

Solid



$$\begin{cases} \varepsilon^{\alpha} = \frac{Volume^{\alpha}}{Volume^{total}} \\ \varepsilon^{s} + \varepsilon^{l} = 1 \end{cases}$$
 2 phases

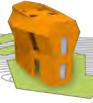
$$\varepsilon^l(\boldsymbol{v^l}-\boldsymbol{v^s})=-\frac{k^{\varepsilon}}{\mu^l}(\boldsymbol{\nabla p}-\rho^l\boldsymbol{g})$$
 Fluid Phase: Darcy's law



Unknowns of the problem: v^s , p

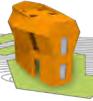
Pores filled with Fluids

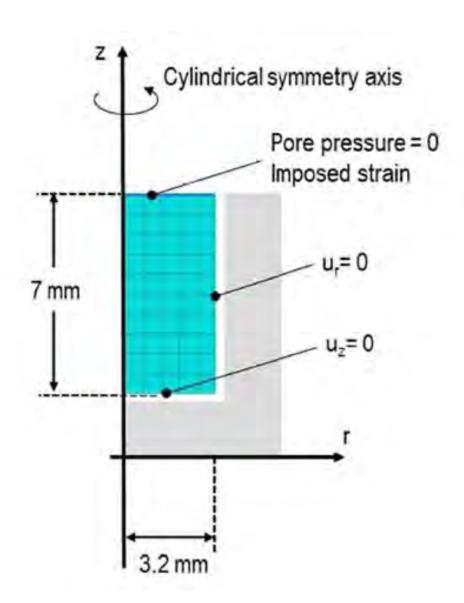
Solid


$$\begin{cases} \varepsilon^{\alpha} = \frac{Volume^{\alpha}}{Volume^{total}} \\ \varepsilon^{s} + \varepsilon^{l} = 1 \end{cases}$$
 2 phases

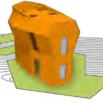
$$\mathbf{t}^{total} = \varepsilon^{s} \mathbf{t}^{s} + \varepsilon^{l} \mathbf{t}^{l} = \mathbf{t}^{eff} - \beta \mathbf{p} \mathbf{I}_{d}$$

Stress tensor as a combination of the solid scaffold stress and pore pressure



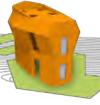

Unknowns of the problem: v^s , p

$$\begin{cases} \frac{D^{s}}{Dt}(\rho^{s}\varepsilon^{s}) + \rho^{s}\varepsilon^{s}\nabla \cdot \boldsymbol{v}^{s} = 0 & \text{Solid Scaffold: Mass balance} \\ \frac{D^{s}}{Dt}(\rho^{l}\varepsilon^{l}) + \nabla \cdot (\rho^{l}\varepsilon^{l}(\boldsymbol{v}^{l} - \boldsymbol{v}^{s})) + \rho^{l}\varepsilon^{l}\nabla \cdot \boldsymbol{v}^{s} = 0 & \text{Fluid Phase: Mass balance} \\ \nabla \cdot (\boldsymbol{t}^{tot}) + \boldsymbol{f}_{\boldsymbol{v}} = \rho^{s}\boldsymbol{\gamma}^{s} & \text{Momentum balance} \end{cases}$$



FEM model

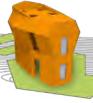
- n=50 (P2,P1) Taylor Hood elements
- Fluid leakage on top surface
- Bottom and lateral displacement fixed


FEM model

Material law based on 6 parameters: Poro-elasticity

Sol	id Phase	Fluid Phase		
Linear Elasticity	Soil Grain Bulk Modulus	Darcy's Law		Fluid Bulk Modulus
E (kPa) ν (-)	K ^s (MPa)	$k \left(m^2 P a^{-1} s^{-1} \right)$	Void Ratio (-)	K ^l (MPa)

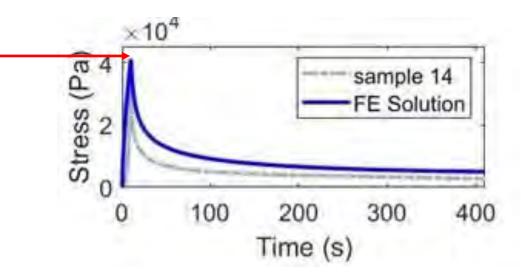
Fixed parameters: 0.4879, 0.799, 2200

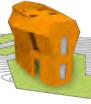

FEM model

Material law based on 6 parameters: Poro-elasticity

Solid Phase			Fluid Phase			
Linear Elasticity		Soil Grain Bulk Modulus	Darcy's Law		Fluid Bulk Modulus	
E (kPa) ν	(-)	K ^s (MPa)	$k \left(m^2 P a^{-1} s^{-1}\right)$	Void Ratio (-)	K ^l (MPa)	

Calibrated parameters

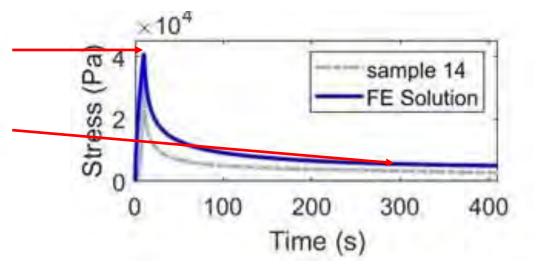

Cost function


X=[Young's modulus, Hydraulic permeability, Void ratio]

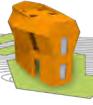
Peak Stress

$$J_1 = \frac{1}{3} * \left(\frac{\max(\mathbf{t}_{abq}^{tot}) - \max(\mathbf{t}_{exp}^{tot})}{\max(\mathbf{t}_{exp}^{tot})}\right)^2$$

Cost function



X=[Young's modulus, Hydraulic permeability, Void ratio]

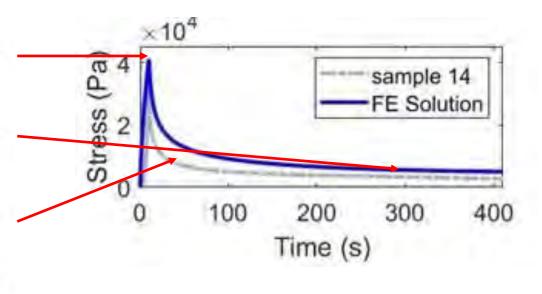

Peak Stress
$$J_1 = \frac{1}{3} * (\frac{\max(\mathbf{t}_{abq}^{tot}) - \max(\mathbf{t}_{exp}^{tot})}{\max(\mathbf{t}_{exp}^{tot})})^2$$

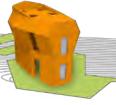
Slope at the end

$$J_2 = \frac{1}{3} * \left(\frac{\frac{\partial \mathbf{t}_{abq}^{tot}}{\partial t} - \frac{\partial \mathbf{t}_{exp}^{tot}}{\partial t}}{\frac{\partial \mathbf{t}_{exp}^{tot}}{\partial t}} \right)^2$$

Cost function

X=[Young's modulus, Hydraulic permeability, Void ratio]


Peak Stress
$$J_1 = \frac{1}{3} * (\frac{\max(\mathbf{t}_{abq}^{tot}) - \max(\mathbf{t}_{exp}^{tot})}{\max(\mathbf{t}_{exp}^{tot})})^2$$


Slope at the end

$$J_2 = \frac{1}{3} * \left(\frac{\frac{\partial \mathbf{t}_{abq}^{tot}}{\partial t} - \frac{\partial \mathbf{t}_{exp}^{tot}}{\partial t}}{\frac{\partial \mathbf{t}_{exp}^{tot}}{\partial t}} \right)^2$$

Cost function

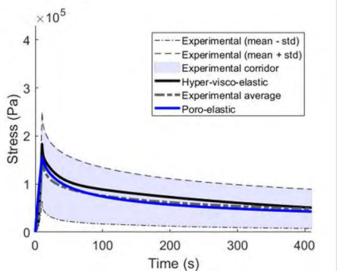
Normalised RMSE
$$J_3 = \frac{1}{3} * (\frac{rms(\mathbf{t}_{abq}^{tot} - \mathbf{t}_{exp}^{tot})}{norm(\mathbf{t}_{exp}^{tot})})^2$$

Cost function $J = J_1 + J_2 + J_3$

Results

C foot)

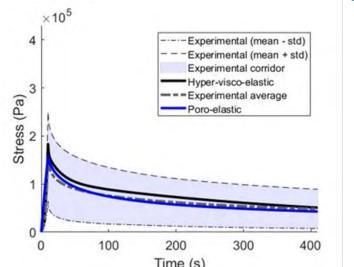
1 to 1 calibration (N=15 slow et N=16 fast)


Slow strain-rate: Average

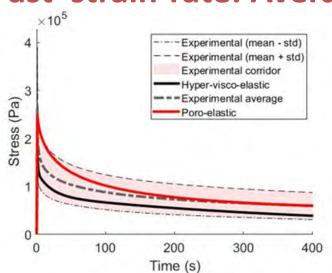
Fast strain-rate: Average

Results

Slow strain-rate: Average

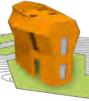


	Model	Strain- rate	Peak-stress error (J1)	End Slope error (J2)	Area between the curves (J3)	Cost function (J)
	Uncoupled Yeoh/Prony visco-hyper-elastic	Slow	0.0283	0.5936	0.0081	0.21
	[Vaidya and Wheatley, 2020]	Fast				
	Poro-linear-elastic Current study	Slow	0.00005	0.00079	0.0039	0.0016
		Fast				

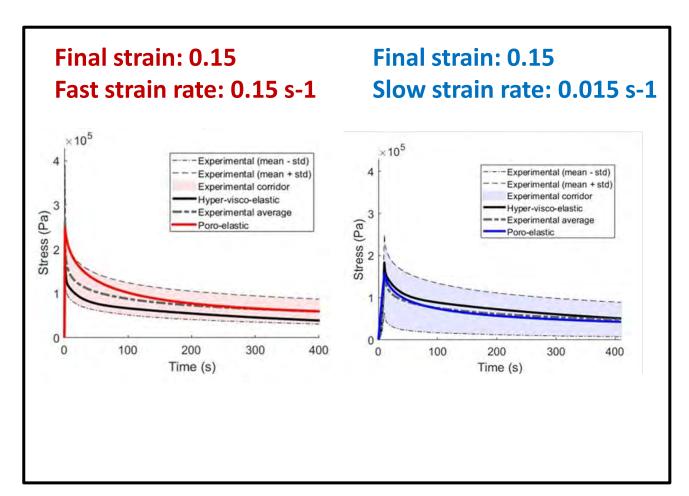


Results

Slow strain-rate: Average

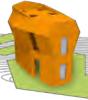


Fast strain-rate: Average

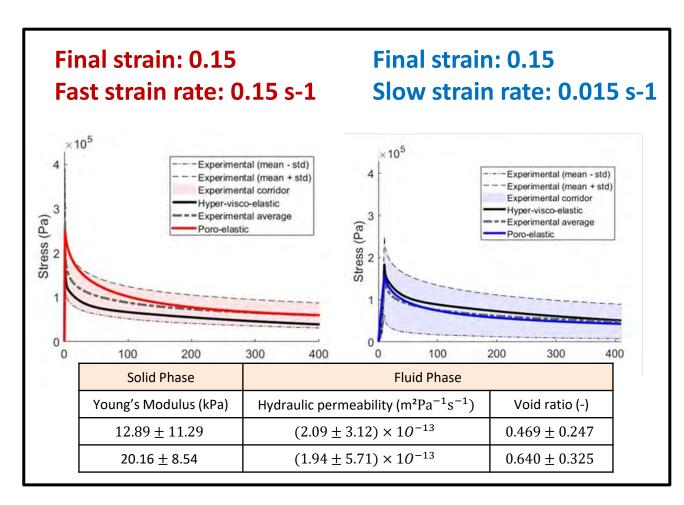


Model	Strain- rate	Peak-stress error (J1)	End Slope error (J2)	Area between the curves (J3)	Cost function (J)
Uncoupled Yeoh/Prony visco-hyper-elastic [Vaidya and Wheatley, 2020]	Slow	0.0283	0.5936	0.0081	0.21
	Fast	0.1559	0.4611	0.0046	0.2477
Poro-linear-elastic Current study	Slow	0.00005	0.00079	0.0039	0.0016
	Fast	0.0026	0.0092	0.007	0.0061

Discussion [Vaidya and Wheatley, 2020]



Previously: [Vaidya and Wheatley, 2020]


Material = Yeoh Hyper-elasticity coupled with Prony Series

=>18 calibrated parameters

Discussion [Vaidya and Wheatley, 2020]

Previously: [Vaidya and Wheatley, 2020]

Material = Yeoh Hyper-elasticity coupled with Prony Series

=>18 calibrated parameters

This Study:

Bi-phasic Material = Poro-linear-elasticity => 4 fixed parameters and 3 calibrated parameters

Discussion: Are the parameters relevant?

Solid Phase:

Young's Modulus E (kPa): [Gras et al., 2012a; Gras et al., 2012b; Palevski et al., 2006]

$$2.4 < E = 16 \pm 10 < 1860$$

Discussion: Are the parameters relevant?

Solid Phase:

Young's Modulus E (kPa): [Gras et al., 2012a; Gras et al., 2012b; Palevski et al., 2006]

$$2.4 < E = 16 \pm 10 < 1860$$

Fluid Phase:

Hydraulic Permeability k ($m^2Pa^{-1}s^{-1}$): [Wheatley et al., 2016; Gimnich et al., 2019]

$$4 \times 1e - 14 < k = (2 \pm 4) \times 1e - 13 < 1 \times 1e - 9$$

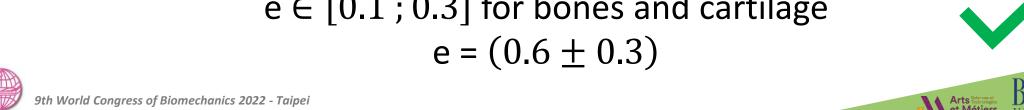
Discussion: Are the parameters relevant?

Solid Phase:

Young's Modulus E (kPa): [Gras et al., 2012a; Gras et al., 2012b; Palevski et al., 2006]

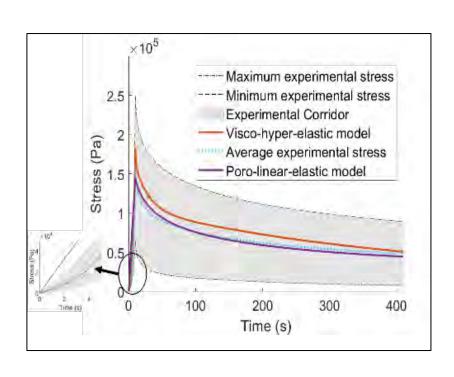
$$2.4 < E = 16 \pm 10 < 1860$$

Fluid Phase:


Hydraulic Permeability k ($m^2Pa^{-1}s^{-1}$): [Wheatley et al., 2016; Gimnich et al., 2019]

$$4 \times 1e - 14 < k = (2 \pm 4) \times 1e - 13 < 1 \times 1e - 9$$

Void Ratio e (-): [Argoubi and Shirazi-Adl, 1996]


$$e \in [0.1; 0.3]$$
 for bones and cartilage $e = (0.6 \pm 0.3)$

Discussion: Limits of the model

Error on the initial slope:

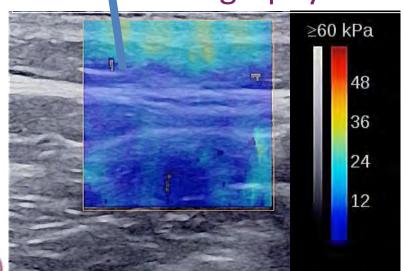
- Linear behaviour of the laws?
- Experimental error ?

Discussion: Limits of the model

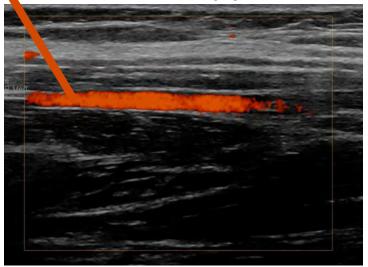
	Cost Function		
E (Pa)	$k (m^2 P a^{-1} s^{-1})$	Void Ratio (-)	J
17989	0.6996	6.07×10 ⁻¹⁴	0.0061
8995	0.3498	3.035×10 ⁻¹⁴	0.0084

Minimization based on the gradients => risk of local minimums

Strong interplay between the Young's modulus and the hydraulic permeability



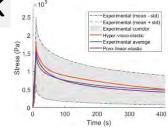
Discussion: Limits of the model


	Cost Function		
E (<i>Pa</i>)	$k (m^2 P a^{-1} s^{-1})$	J	
17989	0.6996	6.07×10 ⁻¹⁴	0.0061
8995	0.3498	3.035×10 ⁻¹⁴	0.0084

Experimental determination of some parameters would avoid these potential local minimums [Fougeron et al., 2020]

Elastography

Power doppler

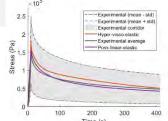


Conclusion and perspectives

Modelling the apparent viscoelastic behaviour of passive muscle tissue under

confined compression using a poroelastic framework

Peak stress and relaxation behaviour mostly recovered


Conclusion and perspectives

Modelling the apparent viscoelastic behaviour of passive muscle tissue under

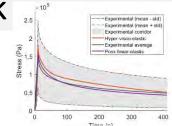
confined compression using a poroelastic framework

• Peak stress and relaxation behaviour mostly recovered

• Respect the structural architecture of the muscle

Increasing pore pressure

Conclusion and perspectives


Modelling the apparent viscoelastic behaviour of passive muscle tissue under

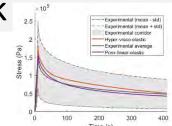
confined compression using a poroelastic framework

Peak stress and relaxation behaviour mostly recovered

Respect the structural architecture of the muscle

Only 6 parameters & possibility to evaluate them experimentally

Solid Phase		Fluid Phase			
Linear Elastic Law	Soil Grain Bulk Modulus	Darcy's Law	Fluid Bulk Modulus		
E (kPa) ν (-)	K^s (MPa)	k (m ² Pa ⁻¹ s ⁻¹) Dynamic Viscosity (Pa s) Void ratio (-)	K^l (MPa)		


Conclusion and perspectives

Modelling the apparent viscoelastic behaviour of passive muscle tissue under

confined compression using a poroelastic framework

Peak stress and relaxation behaviour mostly recovered

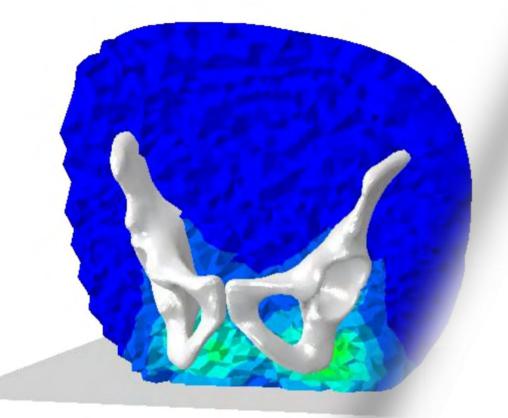
Respect the structural architecture of the muscle

Only 6 parameters & possibility to evaluate them experimentally

Solid Phase			Fluid Phase				
Linear Elastic Law Soil Grain Bulk Modulus		Darcy's Law			Fluid Bulk Modulus		
E (kPa)	ν (-)	K^s (MPa)	$k (m^2 Pa^{-1} s^{-1})$	Dynamic Viscosity (Pas)	Void ratio (-)	K^l (MPa)	

 Possibility to go towards a multiscale/multiphasic model: biomarkers & inflammatory signaling pathways

[Sciumè, 2021] [Sciume *et al.*, 2013] [Urcun et al., 2020]



9th World Congress of Biomechanics 2022 Taipei

Taipei International Convention Center

Thank you for your attention!

Do you have any questions?

[Macron et al., 2018]

Bibliography

[Macron et al., 2018]: Development and evaluation of a new methodology for the fast generation of patient-specific finite element models of the buttock for sitting-acquired deep tissue injury prevention

[Bouten et al., 2003]: The etiology of pressure ulcers: Skin deep or muscle bound?

[Vanderwee et al., 2007]: Pressure ulcer prevalence in Europe: a pilot study

[Kosiak et al., 1959]: Etiology and pathology of ischemic ulcers

[Ceelen et al., 2008]: Compression-induced damage and internal tissue strains are related

[Linder Ganz et al., 2006]: Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics

[Loerakker et al., 2011]: The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading

[Linder-Ganz et al., 2007]: Assessment of mechanical conditions in sub-dermal tissues during sitting:

A combined experimental-MRI and finite element approach

[Landis,1930]: Micro-injection studies of capillary blood pressure in human skin

[Oomens et al., 1987]: A mixture approach to the mechanics of skin

[Argoubi and Shirazi-Adl, 1996]: Poroelastic creep response analysis of a lumbar motion segment in compression

[Bosboom et al., 2001]: Passive transverse mechanical properties of skeletal muscle under in vivo compression

[Aimedieu et al., 2003]: Dynamic stiffness and damping of porcine muscle specimens,

[Van Loocke et al., 2006]: A validated model of passive muscle in compression

[Van Loocke et al., 2008]: Viscoelastic properties of passive skeletal muscle in compression: Stress-relaxation behaviour and constitutive modelling

[Van Loocke et al., 2009]: Viscoelastic properties of passive skeletal muscle in compression|cyclic behaviour

[Wheatley et al., 2015]: Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression

[Wheatley et al., 2016]: A case for poroelasticity in skeletal muscle – finite element analysis: experiment and modelling

[Vaidya and Wheatley, 2020]: An experimental and computational investigation of the effects of volumetric boundary conditions on the compressive mechanics of passive skeletal muscle

[Peyrounette et al., 2018]: Multiscale modelling of blood ow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex

[Gras et al., 2012a]: Hyper-elastic properties of the human sternocleidomastoideus muscle in tension [Gras et al., 2012b]: The nonlinear response of a muscle in transverse compression: assessment of geometry influence using a finite element model

[Palevski et al., 2006]: Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling

[Gimnich et al., 2019]: Magnetic resonance imaging based modeling of microvascular perfusion in patients with peripheral artery disease

[Fougeron et al., 2020]: Combining freehand ultrasound-based indentation and inverse finite element modeling for the identication of hyperelastic material properties of thigh soft tissues

[Sciume et al., 2013]: A multiphase model for three-dimensional tumor growth

[Urcun et al., 2020]: Digital twinning of cellular capsule technology: emerging outcomes from the perspective of porous media mechanics

[Sciumè, 2021]: Mechanistic modeling of vascular tumor growth: an extension of Biot's theory to hierarchical bi-compartment porous medium system

[Soltz and Ateshian, 1998]: Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression

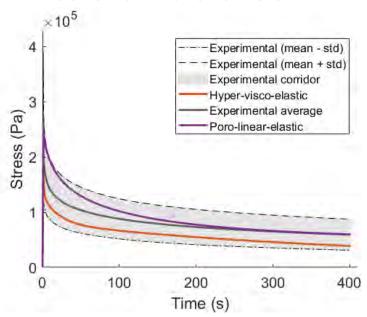
[Ceelen 2008] Compression-induced damage and internal tissue strains are related

[Traa 2019] There is an individual tolerance to mechanical loading in compression induced deep tissue injury

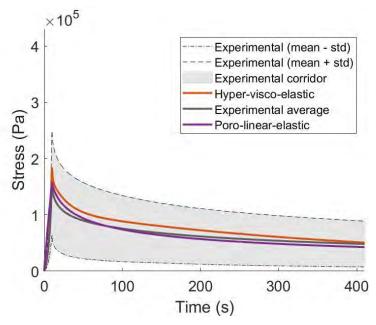
[Nelissen 2018] An advanced magnetic resonance imaging perspective on the etiology of deep tissue injury

[Nelissen 2017] A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats

[Stekelenburg 2005] A new MR-compatible loading device to study in vivo muscle damage development in rats due to compressive loading



Appendix A: Almost incompressible model

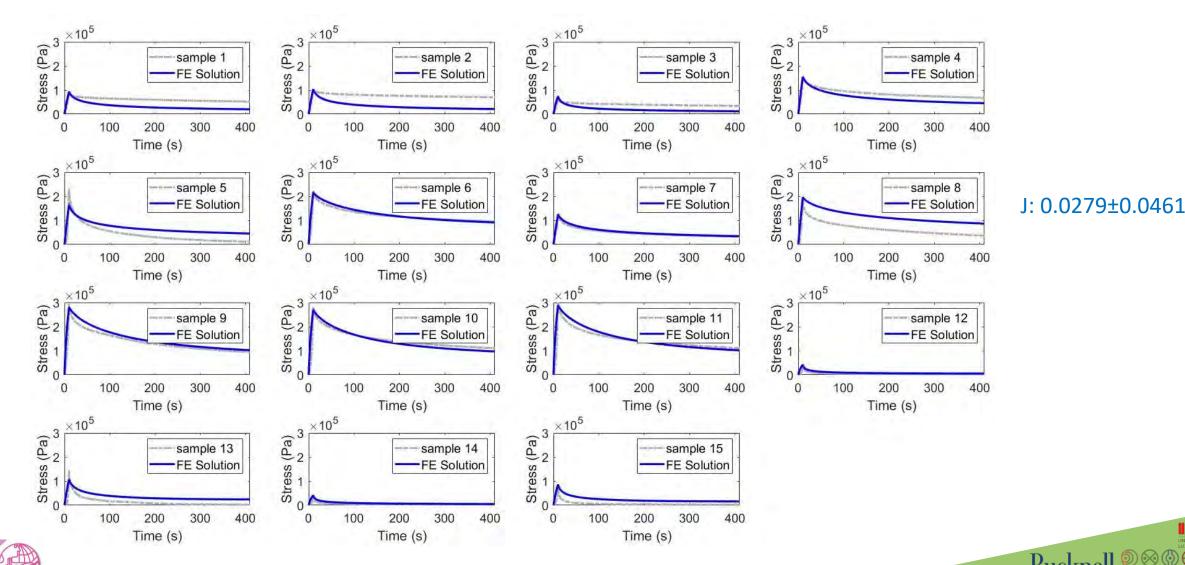

(nu=0.4879)

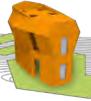
Final strain: 0.15

Fast strain rate: 0.15 s-1

Final strain: 0.15 Slow strain rate: 0.015 s-1

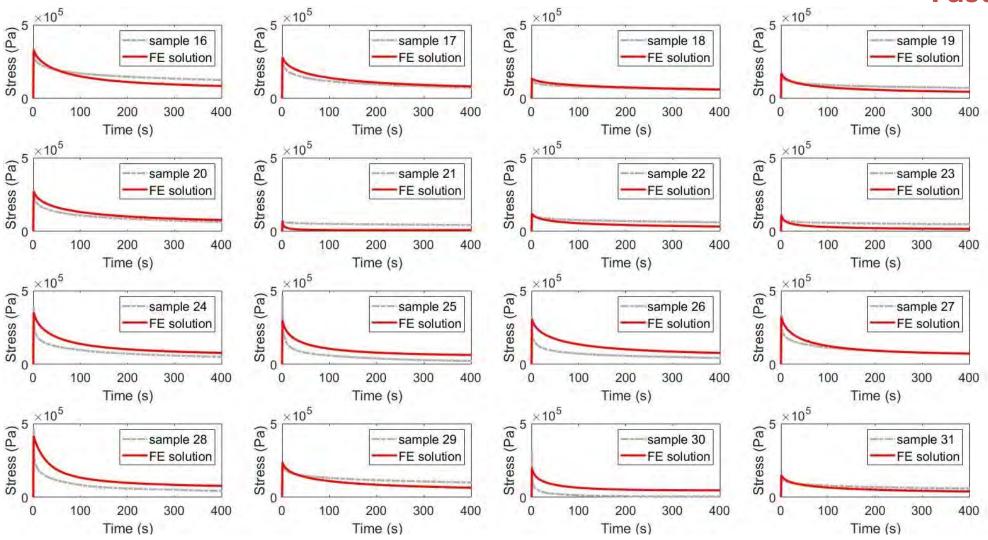
Solid Phase	Fluid Phase		
Young's Modulus (kPa)	Hydraulic permeability (m²Pa ⁻¹ s ⁻¹)	Void ratio (-)	
12.89 ± 11.29	$(2.09 \pm 3.12) \times 10^{-13}$	0.469 ± 0.247	
20.16 ± 8.54	$(1.94 \pm 5.71) \times 10^{-13}$	0.640 ± 0.325	




Appendix A: Almost incompressible model

(nu=0.4879)

Slow strain-rate: N=15

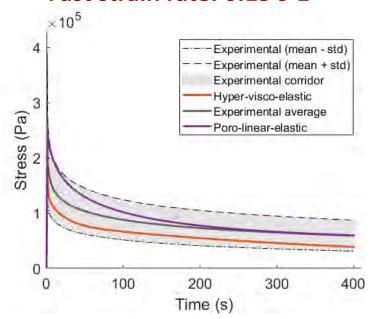

Arts Sciences et et Métiers

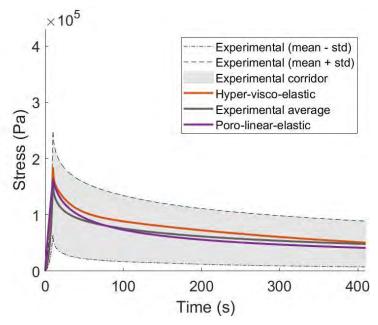
Appendix A: Almost incompressible model

(nu=0.4879)

Fast strain-rate: N=16

J: 0.0523±0.1094



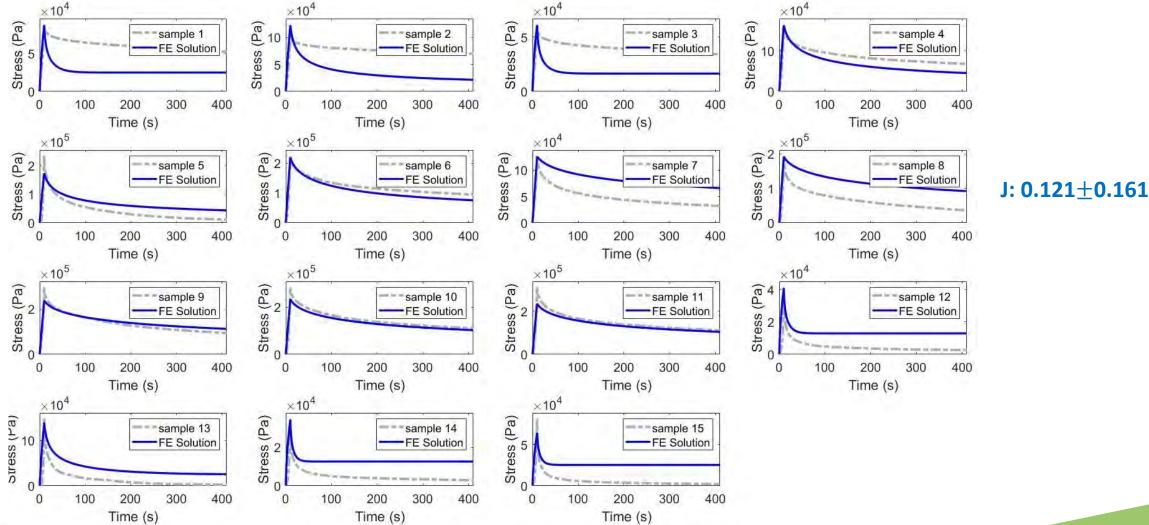

Appendix B: Compressible model [nu=0.2]

Final strain: 0.15

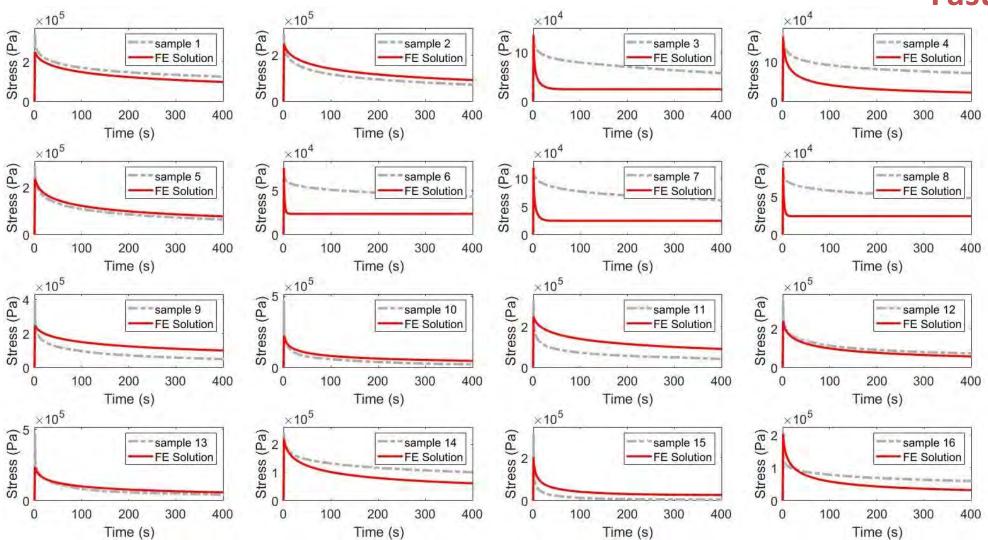
Fast strain rate: 0.15 s-1

Final strain: 0.15 Slow strain rate: 0.015 s-1

Solid Phase	Fluid Phase		
Young's Modulus (kPa)	Hydraulic permeability (m²Pa ⁻¹ s ⁻¹)	Void ratio (-)	
116.02 ± 31.89	$(1.16 \pm 1.93) \times 10^{-12}$	0.81 ± 0.24	
133.75 ± 24.54	$(1.87 \pm 4.17) \times 10^{-12}$	0.95 ± 0.11	

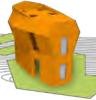


Appendix B: Compressible model [PU=0.2]


Slow strain-rate: N=15

Appendix B: Compressible model [nu=0.2]

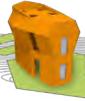
Fast strain-rate: N=16



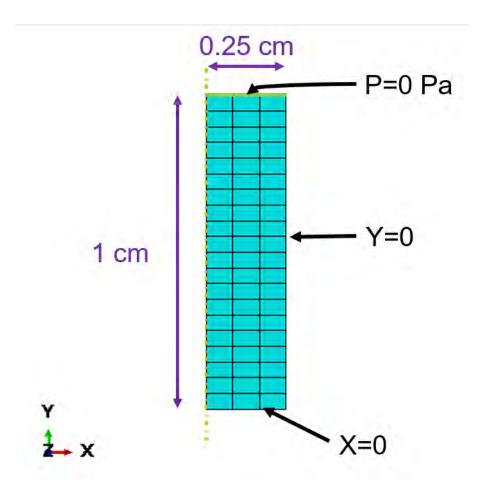
J: 0.12±0.13

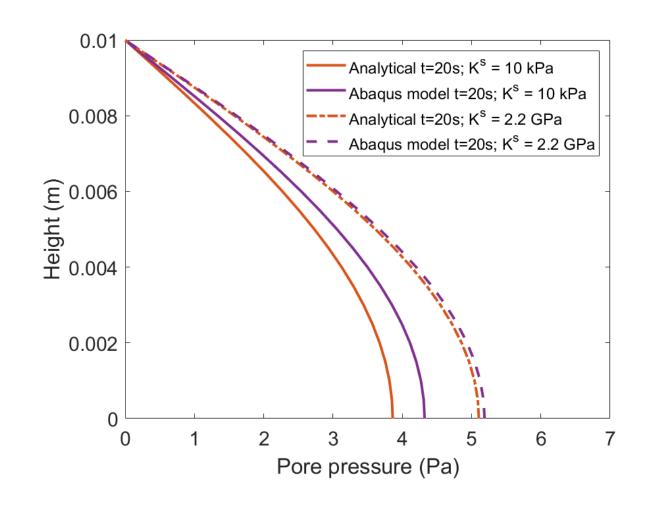
Appendix C: Terzaghi verification (Sciume 2020)

p the pore pressure, p_0 the full load, z the height in the sample, h the height of the sample, t the time, c_v the consolidation coefficient, M the longitudinal modulus, S the inverse of the Biot modulus

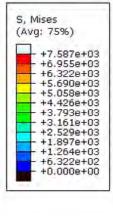

- 1. Small strains and unidimensionnal
- 2. Saturated medium
- 3. Soil grains and fluid are incompressible
- 4. Homogeneous
- 5. Mechanical parameters are constant during the settlement
- 6. Unidimentionnal leakage, following Darcy's law
- Linear link between effective stresses and volume variation of the soil
- 8. The soil has no structural viscosity or secondary settlement

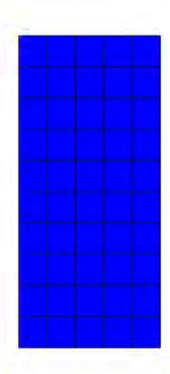
$$p = \frac{4p_0}{\pi} \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{2k-1} \cos[(2k-1)\frac{\pi}{2}\frac{z}{h}] \exp[-(2k-1)^2 \frac{\pi^2}{4} \frac{c_v t}{h^2}]$$


$$c_v = \frac{k^{\varepsilon}}{\nu^l (S + \frac{\beta^2}{M})}$$
$$M = \frac{3K^s (1 - \nu)}{(1 + \nu)}$$
$$S = \frac{\beta - \varepsilon_0^l}{K^s} + \frac{\varepsilon_0^l}{K^l}$$



Appendix C: Terzaghi verification (Sciume 2020)





Appendix D: Evolution of the stress

Step: Compress Frame: 0 Total Time: 0.000000

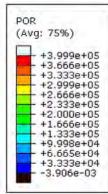
ODB: Job-CC-Fast-Poreux.odb Abaqus/Standard Student Edition 2020 Sat Jun 19 12:37:27 GMT+02:00 2021

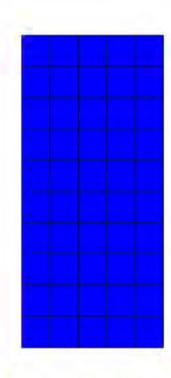
Step: Compression

Increment 0: Step Time = 0.000

Primary Var: S, Mises

Deformed Var: U Deformation Scale Factor: +1.000e+00





Appendix D: Evolution of the pore pressure

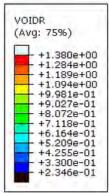
ODB: Job-CC-Fast-Poreux.odb Abaqus/Standard Student Edition 2020 Sat Jun 19 12:37:27 GMT+02:00 2021

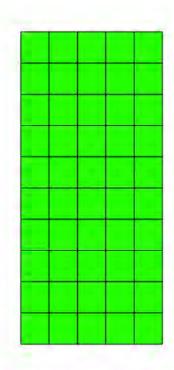
Step: Compression

Increment 0: Step Time = 0.000

Primary Var: POR

Deformed Var: U Deformation Scale Factor: +1.000e+00





Appendix D: Evolution of the void ratio

Step: Compress Frame: 0 Total Time: 0.000000

ODB: Job-CC-Fast-Poreux.odb Abaqus/Standard Student Edition 2020 Sat Jun 19 12:37:27 GMT+02:00 2021

Step: Compression

Increment 0: Step Time = 0.000

Primary Var: VOIDR

Deformed Var: U Deformation Scale Factor: +1.000e+00

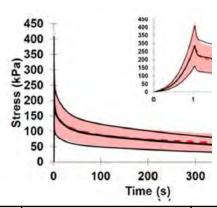
Appendix E: Material Laws Parameters

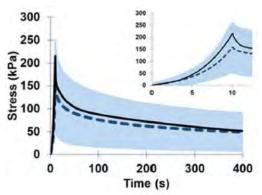
The possible role of poroelasticity in the apparent visco-elastic behavior of passive muscle tissue under compression: calibration of poroelastic material parameters to provide a mechanistic explanation of settlement

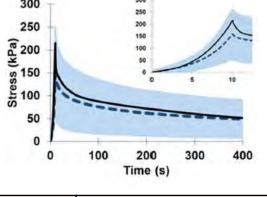
Final strain: 0.15

Fast strain rate: 0.15 s-1

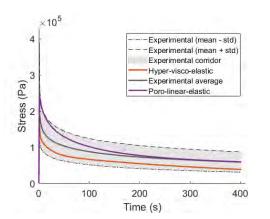
Final strain: 0.15

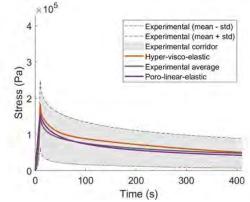

Slow strain rate: 0.015 s-1


Final strain: 0.15


Fast strain rate: 0.15 s-1

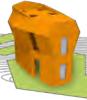
Final strain: 0.15


Slow strain rate: 0.015 s-1

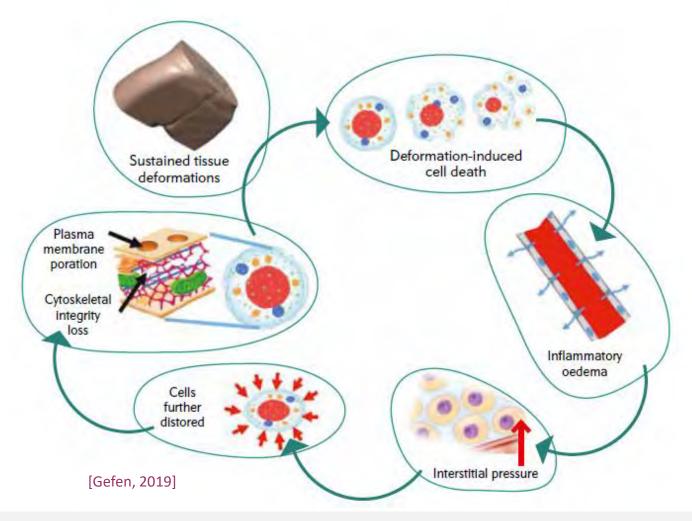


	0 100 200 3 Time (s)	300	Time (s)		
Law	Parameters Type	Parameter symbol	Value		
Yeoh	Hyper-elastic (MPa)	C_{10}, C_{20}, C_{30}	2.23e - 5, 1.28e - 4, 2.52e - 5		
	Hyper-elastic (MPa ⁻¹)	D_1, D_2, D_3	105.9, 0.839, 0.0		
Prony	Shear Coefficients (-)	G_1, G_2, G_3, G_4	0.741, 0.086, 0.093, 0.061		
Series	Bulk Coefficients (-)	K_1, K_2, K_3, K_4	0.563, 0.150, 0.108, 0.147		
	Time Coefficients (s)	$\tau_1, \tau_2, \tau_3, \tau_4$	0.05, 1, 20, 400		

Solid Phase	Fluid Phase		
Young's Modulus (kPa)	Hydraulic permeability ($m^2Pa^{-1}s^{-1}$)	Void ratio (-)	
12.89 ± 11.29	$(2.09 \pm 3.12) \times 10^{-13}$	0.469 ± 0.247	
20.16 ± 8.54	$(1.94 \pm 5.71) \times 10^{-13}$	0.640 ± 0.325	



Bibliography: Order of magnitudes


Authors	Туре	Sample	Material Law	Phase		
				Solid Phase Fluid Phase		se
				$E\left(kPa\right)$	k $(m^2 P a^{-1} s^{-1})$	Void Ratio (-)
[Gras et al., 2012a]	Experimental	Human muscles	hyper-elastic	111 (min: 12 ; max: 292)	-	-
[Gras et al., 2012b]	Experimental (lateral compression)	Human muscles	Linear Elastic	1860 (min: 1020 ; max: 2790)	-	-
[Palevski et al., 2006]	Experimental (Indentation Test)	Porcine muscles	Transient shear modulus	2.4 (long term) 17 (short term)	-	•
[Wheatley et al., 2016]	Experimental (Permeability test)	Rabbit muscles	Poro-hyper- elastic	-	$(7 \pm 2) \times 1e - 11$	-
[Gimnich et al., 2019]	Numerical	Muscle	Poro-elastic	-	min: 4 × 1e − 14 max: 1 × 1e − 9	-
[Argoubi and Shirazi-Adl, 1996]	Numerical	Human Cartilage and bone	Poro-elastic	min: 1 × 1e3 max: 10 × 1e6	$min: 1 \times 1e - 20$ $max: 1 \times 1e - 13$	min: 0.1 max: 0.3
Current study	Numerical	Porcine muscles	Poro-linear- elastic	16 ± 10	$(2\pm4)\times1e-13$	(0.6 ± 0.3)

Conclusion and perspectives

Cell strain >> Inflammatory response of the tissue >>Plasme membrane poration >> cell death

